DAL-111xFOOS
Frequency input: 0.01 Hz to $999.99 \mathrm{kHz} / 0.01 \mathrm{~Hz}$ to $9.9999 \mathrm{kHz} / 0-2.500 \mathrm{kHz}$ Connection for Namur, NPN/PNP with HTL- or TTL-output or for position survey via incremental encoder

Technical features:

- red display of -19999... 99999 digits (optional: green, orange or blue display)
- minimal installation depth: 70 mm without plug-in terminal
- min/max memory
- adjustment via factory default or directly on the sensor signal
- 30 adjustable supporting points
- display flashing at threshold undercut or exceedance
- simplified parameterisation U/min with only 3 parameters
- Schmitt-trigger-input
- zero-key for triggering of Hold, Tara
- permanent min/max-value recording
- digital frequency filter for contact bounce suppression and interference suppresion
- frequency filter with varying pulse-duty factor
- volume metering (totaliser) for frequencies up to 1 kHz (accurate to a pulse)
- mathematical function like reciprocal value, square root, rounding
- sliding averaging with an optional dynamic display filter
- setpoint generator
- brightness control
- programming interlock via access code
- protection class IP65 at the front
- plug-in terminal
- sensor supply
- galv. isolated digital input
- option: relay outputs
- option: analog output
- accessories: PC-based configuration-kit PM-TOOL incl. CD \& USB-adapter for devices without keypad and for a simple adjustment of standard devices

Order code

Contents

1. Brief description 2
2. Assembly 3
3. Electrical connection 4
4. Function description and operation 6
4.1. Programming software PM-TOOL 7
5. Setting up the device 8
5.1. Switching on 8
5.2. Standard parameterisation (flat operation level) 8
Value assignment for the triggering of the signal input
5.3. Programming interlock .,RUM"
Activation/Deactivation of the programming interlock or change into professional or flat operation level
5.4. Extended parameterisation (professional operation level) 13
5.4.1. Signal input parameters „IMP" 13
Value assignment for the triggering of the signal input incl. linearisation
5.4.2. General device parameters „FCT"
Superior device functions like Hold, Tara, min/max permanent, setpoint value function / nominal value function, averaging, brightness control, as well as the control of the digital input and keyboard layout
5.4.3. Safety parameters „COD"
Assignment of user and master code to lock or to receive access to defined parameter such as analog output and alarms, etc.
5.4.4. Analog output parameters „OUT"22Analog output functions
5.4.5. Relay functions „REL"
Parameter for setpoint definition
5.4.6. Alarm parameters „RLI...RL4"
Actuator and dependencies of the alarms
5.4.7. Totaliser (Volume metering) „TOT"28Parameter for calculation of the sum function
6. Reset to factory settings 29
Reset parameters onto the delivery state
7. Alarms / Relays 30
Functional principle of the switching outputs
8. Programmer examples 31Sample applications like e.g. calculation of the input frequency or the adjustment at unknown rotation speed
9. Technical data 34
10. Safety advices 36
11. Error elimination 37

1. Brief description

The panel meter DAL-111 can evaluate pulses in many different ways and show the result in the 5 -digit LEDdisplay. Available options are: frequency coverage with optional filters, summate of pulses or display values via the time, detection of a rotational speed or collection of a position via an incremental encoder. The results can be monitored via alarm conditions and can be displayed onto the optional switching point. Furthermore the results can be freely scaled on an optional analog output and relayed to a control system. The device can be operated directly by Namur sensors, 3 -wire sensors, switching/slider contacts, incremental encoders (HTL-/TTL-output) or TTL-signals.
Via the 4 navigation keys on the front, the device can be adjusted onto different kind of applications and later on different functions of the device can be controlled. The adjustment is also possible via the PCSoftware PM-TOOL with a special connecting cable. With an individual code, the created parameterisation can be protected against changes by the user.
Numerous applications can be realised with this device, like e.g. tachometer, revolution counter, flowmeter, dosing equipment, filling capacity meter, baking time meter of a baking oven, flying knife, position evaluation, position surveillance, flow rate surveillance, acoustic discharge measurements and so on. By use of the integrated, configurable functions like permanent min/max-recording, averaging, frequency filter, setpoint setting, threshold value recording via alarm system, 30 -points-linearisation, mathematic charging and many more, you receive an universal applicable modern system for your demands in measuring and control technique.

2. Assembly

Please read the Safety advice on page 36 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

The dimension symbols can be exchanged before installation via a channel on the side!

3. Electrical connection

$\begin{array}{ll}\text { Type DAL-111xF00S } & \text { - supply of } 115 \text { VAC } \\ \text { Type DAL-111xF00S } & \text { - supply of } 230 \mathrm{VAC}\end{array}$
Type DAL-111xF00S - supply of 230 VAC

Options
alternatively to pulse input 2

Pulse output
$\max .10 \mathrm{kHz}$

Type DAL-111xF00S - supply of 10-30 VDC galv. isolated

Options:

Relais 1

Advice:

If Namur sensors with a nominal voltage of approx. 8 V are used, then a sensor supply of 12 VDC is needed. For devices with a sensor supply terminals 4 and 8 , aswell as terminals 3 and 7 need to be galvanically connected in the device.

M3-devices

Below you find some connection examples with practical applications:

3-wire PNP

3-wire NPN

Incremental encoder with analog output 4-20 mA

Namur

3-wire PNP

3-wire NPN

Incremental encoder (max. 50 mA current consumption)

4. Function and operation description

Operation

The operation is divided into three different levels.
Menu level (delivery status)
This level is for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise "PROF" under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise „ULOC,, under menu item RUM.

Parameterisation level:

Parameter deposited in the menu item can be parameterised here. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus safed. By pressing the „zero-key" it leads to a break-off of the value input and to a change into the menu level. All adjustments are safed automatically by the device and changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu level	P	Change to parameterisation level and deposited values.
	$\triangle \nabla$	Keys for up and down navigation in the menu level.
	0	Change into operation mode.
Parameterisation level	P	To confirm the changes made at the parameterization level.
	$\triangle \nabla$	Adjustment of the value / the setting.
	0	Change into menu level or break-off in value input.
Menu group level	P	Change to menu level.
	$\triangle \nabla$	Keys for up and down navigation in the menu group level.
	0	Change into operation mode or back into menu level.

Function chart:

Underline:

P	Takeover	Δ	Value selection (+)
\square	Stop	∇	Value selection (-)

4.1. Parameterisation software PM-TOOL:

Part of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection is done via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection ist done via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and safed on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanic not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching-on

Once the installation is complete, start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test (88888) is displayed, followed by an indication of the software type and, after that, also for 1 second, the software version. After the starting sequence, the device switches to operation/display mode.
5.2. Standard parameterisation: (flat operation level)

To parameterize the display, press the [P] key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.
Menu level

Menu le	Parameterisation leve					
∇	Setting the final value of the measuring range, EMD: Default: 10000 Set the final value from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level. If SENS was selected as input option, you can only select between MOCA and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.					
	Setting the start/offset value of the measuring range, OFF5: Default: 0 Enter the start/offset value from the smallest to the highest digit [$\mathbf{\Delta}$] [$\boldsymbol{\nabla}$] and confirm each digit with [P]. After the last digit the display switches back to the menu level. If SEMS.F was selected as the input option, you can only select between MOCA and CRL. With MOCR, only the previously set display value is taken over, and with CAL, the device takes over both the display value and the analogue input value.					
	Setting the decimal point, DOT: Default: 0 D.000 The decimal point on the display can be moved with [$\mathbf{\Delta}$] [\mathbf{V}] and confirmed with [P]. The display then switches back to the menu level again.					
	Setting up the display time, 5 EC: Default: 1.0 The display time is set with [$\mathbf{\Delta}$] [\mathbf{V}]. The display moves up in increments of 0.1 sec up to 1 sec and in increments of 1.0 sec up to 10.0 sec . Confirm the selection by pressing the [P] button. The display then switches back to the menu level again.					
	Rescaling the measuring input values, EMDR: Default: 10000 With this function, you can rescale the input value of e.g. 8.000 Hz (works setting) without applying a measuring signal. If sensor calibration has been selected, these parameters are not available.					

N	ation lev							
	Rescaling the measuring input values, OFFR: Default: 0 With this function, you can rescale the input value of e.g. 100 Hz (works setting) without applying a measuring signal. If sensor calibration has been selected, these parameters are not available.							
	Setting of the pulse delay, DELAY: Default: 0 With the pulse delay of $0-250 \mathrm{~s}$ (max), frequencies can be collected, which are even smaller than by the predetermined measuring time of the device. If e.g. a delay of 250 seconds is set, this means that the device waits up to 250 seconds for an edge, before it assumes a 0 Hz frequency. Thus frequencies up to 0.004 Hz can be collected.							
	Adjustment of the optimum digital frequency filter, FI.FRQ: Default: MO If the optional filter is not activated by the adjustment „$M O^{\prime}$, frequencies are ignored by the adjusted frequency filter. Act on the assumption that the pulse-duty factor is 1:1. Accordingly the minimal pulse duration is derived from the half of the time of oscillation. Use a filter of 10 Hz or 20 Hz for contact bounce suppression.							
		Selection of analog output, OUT.RA: Default: 4-20 Three output signals are available: $0-10$ VDC, $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$, with this function, the demanded signal is selected.						
		Setting up the final value of the analog output, OUT.EM: Default: 10000 The final value is adjusted from the smallest digit to the highest digit with [$\mathbf{\Delta}$] [$\boldsymbol{\nabla}$] and digit by digit confirmed with [P]. A minus sign can only be parameterised on the highest digit. After the last digit, the device changes back into menu level.						

Menu level	Parameterisation level
	Setting up the initial value of the analog output, OUT.OF: Default: 00000 The final value is adjusted from the smallest digit to the highest digit with [\mathbf{A}] [\mathbf{V}] and digit by digit confirmed with [P]. A minus sign can only be parameterised on the highest digit. After the last digit, the device changes back into menu level.
	Threshold values / limit values, Li-1: Default: 2000 For both limit values, two different values can be parameterized. With this, the parameters for each limit value are called up one after another.
$\begin{aligned} & H \exists-i \\ & \|\nabla \Delta\| \end{aligned}$	Hysteresis for limit values, $\mathrm{Hy}-\mathrm{l}$: Default: 00000 For all limit values exists a hysteresis function, that reacts according to the settings (threshold exceedance / threshold undercut).
$\begin{aligned} & F_{\omega}-i \\ & \uparrow \nabla \Delta \mid \end{aligned}$	Function if display falls below / exceeds limit value, FU-l: Default: HIGH H ILH LaUn \square The limit value undercut can be selected with LOUU (LOW = lower limit value) and limit value exceedance can be selected with HIGH (HIGH = upper limit value). If e.g. limit value 1 is on a switching threshold of 100 and occupied with function "HIGH", the alarm will be activated by reaching the threshold. If the limit value is allocated to "LOU", an alarm will be activated by undercut of the threshold. See page 29.
	Threshold values / limits, LI-Z: Default: 3000 This value defines the threshold, that activates/deactivates an alarm.
	Hysteresis for limit values, Hy -2: Default: 00000 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.

Menu level	Parameterisation level
$\begin{aligned} & F \boldsymbol{F}-\Xi \\ & \|\nabla \Delta \Delta\| \end{aligned}$	Function for threshold value undercut / exceedance, FU-2: Default: HIGH HI号 Laul \square A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function $H \angle G$, an alarm is activated by reaching the threshold level. If the threshold value was allocated to LOU, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
LEGGE	User code (4-digit number-combination, free available), U.CODE: Default: 0000 If this code is set (>0000), all parameters are locked, if LOC has been selected before under menu item RUM. By pushing [P] during operation mode for approx. 3 seconds, CODE appears in the display. To get access to the unlocked reduced parameter, the user needs to enter the preset U.CODE. This code has to be entered before each parameterisation, until the R.CODE (Master code) unlocks all parameters again.
REGGE	Master code (4-digit number-combination free available), R.CODE: Default: 1234 With this code, all parameters can be unlocked, if $L O C$ has been activated before under menu item RUM. By pushing [P] during operation mode for approx. 3 seconds, CODE appears in the display. The user can now reach all parameters by entering R.CODE. Leaving the parameterisation, under menu item RUMY, the user can unlock them permanently by choosing ULOC or PROF. So, there is no need for anew code entering, even by pushing [P] during operation mode again.
5.3. Programming interlock „RUM*	
	Activation / deactivation of the programming lock or completion of the standard parameterization with change into menu group level (complete function range), RUM: Default: ULOC $\text { ULDC } \frac{\Delta}{\nabla} \square \angle D C \frac{\Delta}{\nabla} \text { PraF } \frac{\Delta}{\nabla} P$ Choose between the deactivated key lock ULOC (works setting) and the activated key lock LOC, or the menu group level PROF, with the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$]. Confirm the selection with [P]. After this, the display confirms the settings with "- . - -", and automatically switches to operating mode. If $L O C$ was selected, the keyboard is locked. To get back into the menu level, press $[P]$ for 3 seconds in operating mode. Now enter the CODE (works setting 1234) that appears using [$\mathbf{4}$] [$\mathbf{\nabla}$] plus [P] to unlock the keyboard. FRIL appears if the input was wrong. To parameterise further functions PROF needs to be set. The device confirms this setting with ,,----, and changes automatically into operation mode. By pressing [P] for approx. 3 seconds in operation mode, the first menu group IMP is shown in the display and thus confirms the change into the extended parameterisation. It stays activated as long as ULOC is entered in menu group RUM , thus the display is set back in standard parameterisation again.

5.4. Extended parameterisation (Professional operation level)

5.4.1. Signal input parameters

Menu level

Menu level	Parameterisation level
$\begin{aligned} & \square \square I L \\ & \nabla \nabla \Delta \mid \end{aligned}$	Number of additional setpoints, SPCT: Default: 00 ㅁ) D \square 30 additional setpoints can be defined to the initial value and final value, so linear sensor values are not linearised. Only activated setpoint parameters are displayed.
$\begin{array}{cc} -1, & 5 . \\ \hline \nabla & \Delta \end{array}$	Display values for setpoints, 015.01 ... D 15.30 : P \square G Under this parameter setpoints are defined according to their value. At the sensor calibration, like at final value/offset, one is asked at the end if a calibration shall be activated.
$\frac{\square}{1}+\cdots \cdot \square$	Analog values for setpoints, IMP.01 ... IMP.30: These setpoints are displayed at works setting ($4-20 \mathrm{~mA}$) only. Here, demanded analog values can be choosen freely. The input of steadily rising analog values needs to be done selfcontained.
ditund	Display underflow, DIIUMD: Default: -19999 With this function the device undercut (_ _ _ _) can be defined on a definite value.
	Display overflow, DI.OUE: Default: 99999
	Input variable of process value, $5 / G . I T$: Default: R.MERS RTHER5 7. 1. \square This parameter controls the device via the analog input signals R.MERS $=$ SEMS.F repectively FRESU or via the digital signals of the interface m.BUS = RS232/RS485 (Modbus protocol). Confirm the selction with [P] and the device changes back into menu level.
$\begin{aligned} & \square \\ & \hline \nabla E L \\ & \nabla \Delta \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-MP-".

5.4.2. General device parameters

Rounding of display values, ROUMD:
Default: 00001

This function is for instable display values, where the display value is changed in increments of $1,5,10$ or 50 . This does not affect the resolution of the optional outputs. With [P] the selection is confirmed and the device changes into menu level.

Arithmetic, RRITH:
Default: MO

With this function the calculated value, not the measuring value, is shown in the display. With MO, no calulation is deposited. With [P] the selection is confirmed and the device changes into menu level.

Sliding average determination, RVG:
Default: 10

Here, the number of the meterings that need to be averaged is preset. The time of averaging results of the product of measuring time SEC and the averaged metering RVG. With the selection of $A V G$ in the menu level DISPL, the result will be shown in the display and evaluated via the alarms.

Menu level	Parameterisation level
	Dynamic for the sliding average determination, STEP: Default: MO na 5Pra izPra With STEP the sliding average determination can be adjusted dynamically. If 6 pro or 12 pro is selected, a frequency value with a variance of 6% or 12% of the current display value is taken over directly for the sliding averaging. The display appears to be more dynamic at a fast frequency change, without appearing disturbed by a slightly unsteady frequency.
$\begin{aligned} & \mid \Sigma E \square \square \\ & \uparrow \nabla \Delta \mid \end{aligned}$	Zero point slowdown, ZERO: Default: 00 At the zero point slowdown, a value range around the zero point can be preset, so the display shows a zero. If e.g. a 10 is set, the display would show a zero in the value range from -10 to +10 ; below continue with -11 and beyond with +11 .
$\begin{aligned} & \operatorname{En} 5 t \\ & \|\nabla \Delta\| \mid \end{aligned}$	Definite contstant value, COMST: Default: 0 The constant value can be evaluated via the alarms or via the analog output, like the current measurand. The decimal place cannot be changed for this value and is taken over by the current measurand. Like this a setpoint generator can be realised via the analog output by this value. Furthermore it can be used for calculating the difference. At this the constant value is substracted from the current measurand and the difference is evaluated in the alerting or by the analog output. Thus regulations can be displayed quite easily.
$\begin{aligned} & \square \square \sqcap \sqcap i \\ & \nabla \triangle \Delta \mid \end{aligned}$	Minimum constant value, CON.IT: Default: -19999 The minimum constant value is adjusted from the smallest to the highest digit with the navigation keys [$\mathbf{\Delta}][\mathbf{V}]$ and confirmed digit per digit with [P]. A minus sign can only be adjusted on the leftmost digit. After the last digit the display changes back into menu level.
$\begin{aligned} & \square \square \pi \sqcap \square \\ & \nabla \Delta \square \end{aligned}$	Maximum constant value, CDM.MR: Default: 99999 The maximum constant value is adjusted from the smallest to the highest digit with the navigation keys [\mathbf{A}] [$\mathbf{\nabla}$] and confirmed digit per digit with [P]. A minus sign can only be adjusted on the leftmost digit. After the last digit the display changes back into menu level.

Menu level	Parameterisation level
Continuation	Via TOTAL the current value of the totaliser can be displayed for approx. 7 seconds, after this the device changes back onto the parameterised display value. If TOT.RE is deposited, the totaliser can be set back by pressing the navigation keys [$\mathbf{\Delta}$][\mathbf{V}], the device acknowledges this with showing 00000 in the display. The configuration of EHT.RE deletes the min/max-memory. Under aCTUR the measurand is shown for approx. 7 seconds, after this the display returns to the parameterised display value. The brightness can be adjusted with LIGHT. This adjustment is not safed and lost at a restart of the device. If $N O$ is selected, the navigation keys are without any function in the operation mode.
$\begin{aligned} & \text { LRSL. } 4 \\ & 4 \nabla \Delta \mid \end{aligned}$	Special function [O]-key, TRST.4: Default: MO For the operation mode, special functions can be deposited on the [O]-Taste. This function is activated by pressing the key. With TRRA the device is set temporarily on a parameterised value The device acknowledges the correct taring with 00000 in the display. SET.TR adds a defined value on to the currently displayed value. Via TOTRL the current value of the totaliser can be displayed for approx. 7 seconds, after this the device switches back on the parameterised display value. If TOT.RE is deposited, the totaliser can be set back by pressing of the navigation keys [4] [$\overline{0}$], the device acknowledges this with 00000 in the display. EHT.RE deletes the $\mathrm{min} /$ max-memory. If HOLD has been selected, the moment can be hold constant by pressing the [O]-key, and is updated by releasing the key. Advice: HOLD is activated only, if $H O L D$ is selected under parameter DISPL. RCTUR shows the measuring value for approx. 7 seconds, after this the device switches back on the parameterised display value. The same goes for $a V G$, here the sliding average values will be displayed. The constant value COMST can be recalled via the digita input, or changed digit per digit. At RL-7...AL-4 an output can be set and therewith e.g. a setpoint adjustment can be done. If $M O$ is selected, the [O]-key is without any function in the operation mode.
	Special function digital input, DIG.IM: Default: MO In operation mode, the above shown parameter can be laid on the optional digital input, too. Function description see TRST.Y.
$\begin{aligned} & \square \mid r E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-FCT-".

5.4.3. Safety parameters

The analog output signal can refer to different functions, in detail these are the current measurand, the min-value, the max-value, the totaliser function / sum function, the constant value or the difference between current measurand and constant value. If HOLD is selected, the signal of the analog output will be kept. It can be continued processing after a deactivation of HOLD. With [P] the selection is confirmed and the device changes into menu level.

Selection analog output, OUT.RA:

Default: 4-20

Three output signals are available $0-10$ VDC, $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$. Select the desired signal with this function.

Setting the final value of the analog output, OUT.EM:
Default: 10000

The final value is adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$] [$\boldsymbol{\nabla}$] and confirmed digit per digit with [P]. A minus sign can only be parameterised on the leftmost digit. After the last digit the device changes back into menu level.
Setting the initial value of the analog output, OUT.OF:
Default: 00000

The initial value is adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$] [$\boldsymbol{\nabla}$] and confirmed digit per digit with [P]. A minus sign can only be parameterised on the leftmost digit. After the last digit the device changes back into menu level.

| Menu level | Parameterisation level |
| :--- | :--- | :--- |

5．4．5．Relay functions

Menu level	Parameterisation level		
$\begin{aligned} & \mid-E L-i \\ & \|\nabla \Delta\| \end{aligned}$	Alarm relay Default：RL－1 \qquad LaLI Each setpoin at activated available in the other selected activated／dea front of the de	REL－7： i ．．．．\quad RL－ optional）can be linked arms RLI／4 or deactiv menu level LOG－1 and functions，these two p ivated，in this case th ce．With［P］the selec	RL－nil．．．RL－n4 via 4 alarms（by default）．This can either be inserted d alarms RLMI／Y．If LOGIC is selected，logical links are 7－1．Access to these two menu levels is via LOGIC，at all meters are overleaped．Via OM／DFF the setpoints can be output and the setpoint display are set／not set on the is confirmed and the device changes into menu level．
$\begin{aligned} & \qquad \square[-1 \\ & \|\nabla \Delta\| \end{aligned}$	Logic relay Default： $\mathbb{O R}$ Here，the sw describes the	LOG－l： nロッ ching behaviour of th functions with inclus	\square \square nRind lay is defined via a logic link，the following schema of $\operatorname{RL-1}$ and $R L-2$ ：
	ロr	A1 v A2	As soon as a selected alarm is activated，the relay operates．Equates to operating current principle．
	のロー	$\overline{A 1 \vee A 2}=\overline{A 1} \wedge \overline{A 2}$	The relay operates only，if no selected alarm is active．Equates to quiescent current principle．
	$\boldsymbol{\square}$	$\mathrm{A} 1 \wedge \mathrm{a} 2$	The relay operates only，if all selected alarms are active．
	のアのロ	$\overline{A 1 \wedge A 2}=\overline{A 1} \vee \overline{A 2}$	As soon as a selected alarm is not activated，the relay operates．
	With［P］the selection is confirmed and the device changes into menu level．		

5.4.6. Alarm parameters

Menu level

The same applies to -RL2- to -RLL-

5.4.7. Totaliser (Volume measurement)

| Menu level | Parameterisation level |
| :--- | :--- | :--- |

Programming lock, RuH:

6. Reset to factory settings

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press button [P]

With reset, the default values of the program table are loaded and used for subsequent operation. This puts the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor a limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. hold or min/max-value.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, $\min / m a x-$ value, hold-value, totaliser value, sliding average value, constant value, difference between instantaneous value and constant value or an activation via the digital input or via the [O]-key.
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating current / Quiescent current

Operating current

By operating current the alarm S1-S2 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a short-term exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8．Programmer examples

Example for the rotation speed adjustment：

In this application the rotation speed of an axis shall be collected via a toothed wheel with 30 sprockets，per Namur sensor．It is then displayed with one position after decimal point and the dimension rpm．

Parameter	Settings	Description
L $\square_{\text {OF }}$	$r \square \underline{\square}$	Rotation－rotation speed measurment up to 10 kHz
$\square \square \square$	$3 \square$	Number of sprockets
ロロレ	$\square 1 . \square$	1 position after decimal point

Advice：The input frequency may be maximum 9.999 kHz in this operating module．So，a rotation speed parameterisation via the frequency adjustment is rarely necessary．

Example for the position coverage：

A measuring system for length works via a incremental encoder with two dephased output signals（typically A and B）and 100 pulse／rotation．The axis perimeter was calculated in a way that the measuring section can be extracted by a rotation of $6 \mathrm{~cm}=60 \mathrm{~mm}$ ．The display shall show the relative position in millimeter．There is a zero joint position with a limit switch that can zero the display if required．

Parameter	Settings	Description
L $\square_{\text {PIE }}$	Pロら仕	Positioning－rotary encoder
$\boldsymbol{P} \boldsymbol{\square}$	$1 \square 1 \square$	Pulse number per rotation
Ena	［17	Change of length per rotation
	上ワロロ	Display zero

Advice：The display starts always on position zero．The parameter DIG．IM can be found under parameter group－FCT－in the extended parameterisation PROF．

Example for angle coverage：

On a manually operated bender for sheet metal the bending angle shall be displayed in degree．The device is in zero state $\left(0^{\circ}\right)$ during switching on of the display．An incremental encoder with 360 pulses／rotation is used．

Parameter	Settings	Description
L $3 \boldsymbol{\square}$	Paら仕	Positioning－rotary encoder
	$3 \square \square$	Pulse number per rotation
Ena	$3 \square \square$	Angle sum per rotation

Examples：Adjustment according to number of sprockets at unknown rotation speed．

－nearly 100% of the rotation speeds are in the range of 0 to 30.000 r．p．m．
－the number of sprockets varies（without gearing）between 1 and 100
－in automation，the frequency supply never exceeds 10 kHz （rather 3 kHz ）
Assume a rotation speed of 60 r．p．m．at 1 Hz ，whereat the real frequency value will not be considered．
Our example complies with a number of sprockets of 64 ．

Setting up the advice

Based on the default settings of the display，the following parameters need to be changed：

Parameter	Settings	Description	
L $\\|_{\text {IV }}$	FrEGi	Applying of the measuring signal is not applicable．	
－ローIE	153	Complies with 9.9999 Hz ．	
Eーロ	\square	Assumed final value．	
Enaß	7， 1764	Complies with 64 sprockets．	

If the frequency needs to be displayed with a position after decimal point，then a 60 has to be selected as final value for this adjustment．

Parameter	Settings	Description
L $-\square$	FrEGu	Applying of the measuring signal is not applicable．
\rightarrow RríE	15］	Complies with 9.9999 Hz
Ena	$\square \square$	Assumed final value
$\square \square \square$	ㄱ．1）	1 position after decimal point
Eーロ日	7， 10.15	Complies with 64 sprockets

Example：Rotation speed of a machine shaft

There are 4 sprockets on one machine shaft．Applied in an angle of 90° to each other and to the rotation speed measurement．The sprockets are collected via a proximity switch and evaluated by the frequency device，which shall display the rotation speed in U／min． $0 \ldots 3600 \mathrm{U} / \mathrm{min}$ is preset as rotation speed range of the machine．

Calculation of the input frequency

Number of sprockets

$$
=4
$$

Rotation speed $=3600 \mathrm{U} / \mathrm{min}$

$$
\begin{aligned}
& \text { Final rotation speed }\left[\frac{U}{\min }\right] \\
& \text { Final frequency }[\mathrm{Hz}]=\frac{60\left[\frac{s}{\min }\right] \times 1 U}{3600 \frac{U}{\min }} \times 4=240 \mathrm{~Hz} \\
& \text { Final frequency }[\mathrm{Hz}]=\frac{30 \frac{s}{\min } \times 1 U}{}
\end{aligned}
$$

Setting up the device

Based on the default settings of the device，following parameters need to be changed：

Parameter	Settings	Description
LUFE	FrEGi	As the input frequency is known，the device does not need to be applied to the measuring section．
－MriE	1～ET	The final frequency is in the range of 100.00 to 999.99 Hz ．
Ena	$35 \square \square$	A rotation speed of 3600 shall be displayed as final value．
Enan	コ4ロロ｜	The final frequency for display value 3600 is 24.00 Hz ．

9. Technical data

Housing	
Dimensions	$96 \times 48 \times 70 \mathrm{~mm}$ (WxHxD)
	$96 \times 48 \times 89 \mathrm{~mm}(\mathrm{~W} \times H \times D)$ incl. plug-in terminal
Panel cut-out	$92.0^{+0.8} \times 45.0^{+0.6} \mathrm{~mm}$
Wall thickness	up to 15 mm
Fixing	screw elements
Material	PC Polycarbonate, black, UL94V-0
Sealing material	EPDM, 65 Shore, black
Protection class	Standard IP65 (Front), IP00 (back side)
Weight	approx. 200 g
Connection	plug-in terminal; wire cross section up to $2.5 \mathrm{~mm}^{2}$
Display	
Digit height	14 mm
Segment colour	red (optional green, yellow or blue)
Range of display	-19999 to 99999
Switching points	one LED per switching point
Overflow	horizontal bars at the top
Underflow	horizontal bars at the bottom
Display time	0.1 to 10.0 seconds
Input	
Sensing device	Namur, 3-wire initiator, pulse input, TTL
High/Low level TTL level	$\begin{aligned} & >15 \mathrm{~V} /<4 \mathrm{~V}-\mathrm{U}_{\text {in }} \max .30 \mathrm{~V} \\ & >4.6 \mathrm{~V} /<1.9 \mathrm{~V} \end{aligned}$
Input frequency	$0.01 \mathrm{~Hz}-999.99 \mathrm{kHz}$ $0.01 \mathrm{~Hz}-9.9999 \mathrm{kHz}$ at rotation speed ROTRR $0-2.5000 \mathrm{kHz}$ at position coverage POSIT
Input resistance	R_{l} at $24 \mathrm{~V} / 4 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{I}}$ at Namur $1.8 \mathrm{k} \Omega$
Frequency filter	none, $100 \mathrm{~Hz}, 50 \mathrm{~Hz}, 20 \mathrm{~Hz}, 10 \mathrm{~Hz}, 5 \mathrm{~Hz}, 2 \mathrm{~Hz}$
Digital input	$\begin{aligned} & <24 \mathrm{~V} \text { OFF, }>10 \mathrm{~V} \text { ON, max. } 30 \mathrm{VDC} \\ & \mathrm{R}_{\mathrm{I}} \sim 5 \mathrm{k} \Omega \end{aligned}$
Accuracy	
Temperature drift	$50 \mathrm{ppm} / \mathrm{K}$
Measuring time	$0.1 \ldots 10.0$ seconds, respectively optional pulse delay 250 seconds
Measuring principle	Frequency measuring / pulse width modulation
Measuring error	0.05% of measuring range; ± 1 digit
Resolution	approx. 19 bit per measuring range

Output	
Sensor supply	$24 \mathrm{VDC} / 50 \mathrm{~mA}$
Pulse output	max. 19 kHz
Analog output	$0 / 4-20 \mathrm{~mA} /$ burden $\leq 500 \Omega$ or 0-10 VDC / $\geq 10 \mathrm{k} \Omega, 16$ bit
Switching outputs	
Relay Switching cycles	with change-over contacts 250 VAC / 5 AAC; 30 VDC / 5 ADC 30×10^{3} at 5 AAC, 5 ADC ohm resistive load 10×10^{6} mechanically Diversity according to DIN EN50178 / Characteristics according to DIN EN60255
Power supply	230 VAC $\pm 10 \%$ max. 10 VA 10-30 VDC galv. isolated, max. 4 VA
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	$0 . . .50^{\circ} \mathrm{C}$
Storing temperature	$-20 . .80^{\circ} \mathrm{C}$
Climatic density	relative humidity 0-80\% on years average without dew
Height	up to 200 m above sea level
EMV	EN 61326
CE-sign	Conformity to directive 2004/108/EG
Safety standard	According to low voltage directive 2006/95/EG EN 61010; EN 60664-1

10. Safety advices

Please read the following safety advice and the assembly chapter 1 before installation and keep it for future reference.

Proper use

The DAL-111--device is designed for the evaluation and display of sensor signals.

Attention! Careless use or improper operation can result in personal injury and/or damage the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The DAL-111-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 6A N.B. fuse.
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, the best measuring results can be received.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

11. Error elimination

	Error description	Measures
1.	The device shows a permanent overflow	- The input frequency is too high for the selected frequency range. Correct „RRMGE" according to this. - Disturbing pulses lead to an increased input frequency, activate „FI.FRG" at smaller frequencies or shield the senor line. - A mechanic switching contact chatters. Activate the frequency filter „FI.FRQ" with 10 or 20 kHz . - The display was taught faulty under „TYPE" = „SEMS.F". Error elimination see below.
2.	The device shows a permanent underflow.	- An offset frequency „OFF5R" bigger than 0 Hz respectively a "Living Zero" was selected, in which no frequency is aligned. Check the sensor lines or set the „OFFSA" onto 0 Hz . - The display underflow DL.UMD was selected too high. The according parameter needs to be adapted. - The device was taught faulty under „TYPE" = „SEMS.F". Error elimination see below.
3.	The displayed values switches sporadical.	- Disturbances lead to short-term display switches. For smaller frequences use the frequency filter „FI.FRO", select a higher measuring time or use the sliding averaging. - The sprockets that needs to be collected, are not evenly spread on a shaft or are not measured accurately. Use the sliding averaging " $A V G^{"}$ if necessary with the dynamic function „STEP". The displayed value "DISPL" needs to be set on „RVG".
4.	The display remains on zero.	- The sensor was not connected properly. Check the connection lines and if necessary the sensor supply. Best directly on the screw terminals of the device! - A PNP- respectively NPN-output does not reach the required threshold. Check the voltage between terminal 2 and 3 with a Multimeter. Depending on signal form it generally shoud be between 4 V and 15 V . The thresholds can be checked more safely with an oscilloscope. If necessary include an external pullup or pull-down. - A Namur-sensor does not react. Check the distance between the sensor and the sprocket / survey mark and if necessary measure the voltage between 1 and 3. In open condition the input voltage needs to be smaller than 2.2 V and in active condition bigger than 4.6 V . - The selected range of the input frequency is too high. Reduce the frequency range „RRMGE" to a smaller value. - The activated frequency filter „FI.FRQ" suppresses the relevant pulses. Increase the filter frequency „FI.FRQ" or use the adaption of the key proportion „FI.RRT". If this should not work, temporarily deactivate the frequency filter with „FI.FRQ" = ,MO". - The device was taught faulty under „TYPE" = „SEMS.F". Change into „TYPE" „FREQU" and preset the assumed frequency range „RAMGE" and the according initial and final values „EMD", „OFFS", „EMDF", and „OFF5F". So you can check if a frequency signal was connected to the input.
5.	The device shows "HELP" in the 7 -segment display	- The device located an error in the configuration memory, excecute a reset to the default values and set up the device according to your application.
6.	Program numbers for the parameterisation of the input are not available	- The programming interlock is activated. - Enter correct code.
7.	The device shows „ERRY" in the 7 -segment display	- Contact the manufacturer if errors of this kind occur.
8.	The device does not react as expected.	- If you are not sure, that the device has been parameterised before, restore the state of delivery as described in chapter 6.

fill level

water level

pressure

temperature

flow

visualization

signal converter

sensoric

Wir erwarten Ihren Anruf.

ACS-CONTROL-SYSTEM GmbH
Lauterbachstr. 57
D- 84307 Eggenfelden

ACS-CONTROL-SYSTEM

Tel.: +49 (0) 8721/ 9668-0
Fax: +49 (0) 8721/9668-30
info@acs-controlsystem.de www.acs-controlsystem.de

