

Füllstand

Druck

Temperatur

Durchfluss

Visualisierung Messumformer

Sensorik

Technische Information

Transcont UTN 500 Universeller Kopftransmitter für Widerstandsthermometer, Thermoelemente, Widerstands- und Spannungsgeber, einstellbar über PC, zum Einbau in Anschlusskopf Form B

Anwendungsbereich

- lacktriangledown PC programmierbarer (PCP) Temperaturkopftransmitter zur Umwandlung verschiedener Eingangssignale in ein analoges, skalierbares 4...20 mA Ausgangssignal
- Eingang:

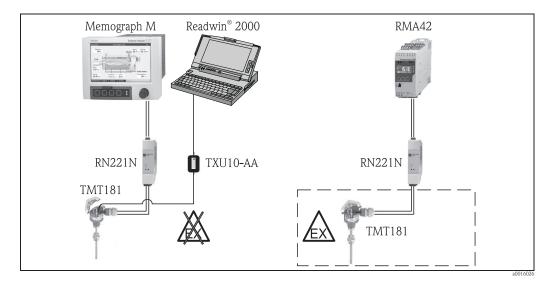
Widerstandsthermometer (RTD)

Thermoelemente (TC)

Widerstandsgeber (Ω)

Spannungsgeber (mV)

■ Konfiguration über PC mit Konfigurationskit TXU10-AA (Zubehör)


Ihre Vorteile

- Universell PC-programmierbar für verschiedene Eingangsig-
- 2-Drahttechnik, Analogausgang 4...20mA
- Hohe Genauigkeit im gesamten Umgebungstemperaturbe-
- Ausfallinformation bei Fühlerbruch oder Fühlerkurzschluss, einstellbar nach NAMUR NE 43
- EMV nach NAMUR NE 21, CE
- UL Gerätesicherheit nach UL 3111-1
- GL Germanischer Lloyd Schiffsbauzulassung
- Ex-Zulassung
 - ATEX Ex ia und Staub-Ex Zone 22 unter Einhaltung der EN 50281-1
 - FM IS
 - CSA IS
- Galvanische Trennung
- Online-Konfiguration während Messbetrieb mit SETUP-Steckverbinder
- Kundenspezifische Linearisierung
- Kennlinienanpassung
- Ausgangssimulation

Arbeitsweise und Systemaufbau

Messprinzip

Elektronische Erfassung und Umformung von Eingangssignalen in der industriellen Temperaturmessung.

Messeinrichtung

Der Temperaturkopftransmitter UTN 500 ist ein Zweidrahtmessumformer mit Analogausgang, Messeingang für Widerstandsthermometer und Widerstandsgeber in 2-, 3- oder 4-Leiteranschluss, Thermoelemente und Spannungsgeber. Die Einstellung des UTN 500 erfolgt mit dem Konfigurationsset TXU10-AA.

Eingang

Eingangssignal

Widerstandsthermometer (RTD)

	Bezeichnung	Messbereichsgrenzen		min. Messspanne
nach IEC 751 $(\alpha = 0,00385)$	Pt100 Pt500 Pt1000	-200850 °C -200250 °C -200250 °C)	(-328+1562 °F) (-328+482 °F) (-328+482 °F	10 K (18 °F) 10 K (18 °F) 10 K (18 °F)
nach DIN 43760 ($\alpha = 0,00618$)	Ni100 Ni500 Ni1000	-60180 °C -60150 °C -60150 °C	(-76+356 °F) (-76+302 °F) (-76+302 °F)	10 K (18 °F) 10 K (18 °F) 10 K (18 °F)
Anschlussart		2-, 3- oder 4-Leiterschaltung bei 2-Leiterschaltung Kompensation des Leitungswiderstandes möglich (020 Ω).		
Sensorleitungswiderstand		max. 11 Ω je Leitung		
Sensorstrom		≤ 0,6 mA		

Widerstandsgeber (Ω)

Bezeichnung	Messbereichsgrenzen	min. Messspanne
Widerstand (Ω)	10400 Ω 102000 Ω	10 Ω 100 Ω

Thermoelemente (TC)

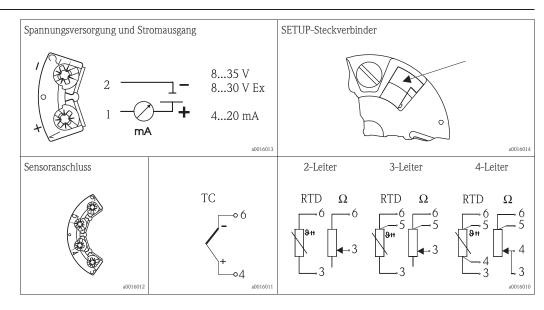
	Bezeichnung	Messbereichsgrenzen		min. Messspanne	
nach NIST Monograph 175, IEC 584	B (PtRh30-PtRh6) ¹⁾ E (NiCr-CuNi) J (Fe-CuNi) K (NiCr-Ni) N (NiCrSi-NiSi) R (PtRh13-Pt) S (PtRh10-Pt) T (Cu-CuNi)	0+1820 °C -200+915 °C -200+1200 °C -200+1372 °C -270+1300 °C 0+1768 °C 0+1768 °C -200+400 °C	(323308 °F) (-3281679 °F) (-3282192 °F) (-3282501 °F (-4542372 °F) (323214 °F) (323214 °F) (-328752 °F)	500 °C (900 °F) 50 °C (90 °F) 50 °C (90 °F) 50 °C (90 °F) 50 °C (900 °F) 500 °C (900 °F) 500 °C (900 °F) 50 °C (900 °F)	
Nach ASTME E988	C (W5Re-W26Re) D (W3Re-W25Re)	02320 °C 02495 °C	(324208 °F) (324523 °F)	50 °C (90 °F) 50 °C (90 °F)	
Nach DIN 43710	L (Fe-CuNi) U (Cu-CuNi)	-200+900 °C -200+600 °C	(-3281652 °F) (-3281112 °F)	50 °C (90 °F) 50 °C (90 °F)	
ohne Angabe	MoRe5-MoRe41	02000 °C	(323632 °F)	500 °C (900 °F)	
Vergleichsstelle		intern (Pt100) oder extern (080 °C (32176 °F))			
Vergleichsstellengenauigkeit		± 1 K (± 1,8 °F)			
Sensorstrom		30 nA			

¹⁾ Höherer Messfehler für Temperaturen unterhalb 300 °C (572 °F).

Spannungsgeber (mV)

Bezeichnung	Messbereichsgrenzen	min. Messspanne
Millivoltgeber (mV)	-10100 mV	5 mV

Ausgang


Ausgangssignal	Stromausgang		
	420 mA, 204 mA		
Ausfallsignal	Messbereichunterschreitung linearer Abfall bis 3,8 mA Messbereichsüberschreitung linearer Anstieg bis 20,5 mA		
	Fühlerbruch, Fühlerkurzschluss ¹⁾	≤ 3,6 mA oder ≥ 21,0 mA	
	1) nicht für Thermoelemente		
Bürde	Max. Bürde: (V _{Versorgung} - 8 V) / 0,025 A		
Übertragungsverhalten	Temperaturlinear, widerstandslinear, spannungslinear		
Galvanische Trennung	E/A: U = 2 kV AC		
Filter	Digitales Filter 1. Ordnung: 08 s		
Strombegrenzung	≤ 25 mA		

Einschaltverzögerung

 $4 \text{ s} \text{ (w\"{a}hrend Einschaltvorgang } I_a = 3.8 \text{ mA)}$

Energieversorgung

Klemmenbelegung

Versorgungsspannung

8...35 V DC, Verpolungsschutz Ex-Version: 8...30 V DC

Restwelligkeit

Zul. Restwelligkeit USS \leq 5 V bei Ub \geq 13 V, $f_{max} = 1 \text{ kHz}$

Leistungsmerkmale

Antwortzeit

1 s

Referenzbedingungen

Kalibriertemperatur 23 °C \pm 5 K (73,4 °F \pm 9 °F)

Maximale Messabweichung

Widerstandsthermometer (RTD)

Bezeichnung	Messgenauigkeit ¹⁾
Pt100, Ni100	0,2 K (0,36 °F) oder 0,08 %
Pt500, Ni500	0,5 K (0,8 °F) oder 0,20 %
Pt1000, Ni1000	0,3 K (0,54 °F) oder 0,12 %

% beziehen sich auf die eingestellte Messspanne. Der grössere Wert ist gültig.

Widerstandsgeber (Ω)

Bezeichnung	Messgenauigkeit 1)	Messbereich
Widerstand	± 0,1 Ω oder 0,08 %	10400 Ω
	\pm 1,5 Ω oder 0,12 $\%$	102000 Ω

^{1) %} beziehen sich auf die eingestellte Messspanne. Der grössere Wert ist gültig.

Thermoelemente (TC)

Bezeichnung	Messgenauigkeit ¹⁾
K, J, T, E, L, U N, C, D S, B, R, MoRe5MoRe41	typ. 0,5 K (0,8 °F) oder 0,08 % typ. 1,0 K (1,8 °F) oder 0,08 % typ. 2,0 K (3,6 °F) oder 0,08 %
Einfluss der internen Vergleichsmessstelle	Pt100 DIN IEC 751 Kl. B

1) % beziehen sich auf die eingestellte Messspanne. Der grössere Wert ist gültig.

Spannungsgeber (mV)

Bezeichnung	Messgenauigkeit 1)	Messbereich
Millivoltgeber	± 20 μV oder 0,08 %	-10100 mV
Einfluss der Versorgungs- \leq \pm 0,01 %/V Abweichung von 24 V $^{2)}$ spannung		
Einfluss der Bürde $\leq \pm 0.02 \%/100 \Omega^{2}$		

- 1) % beziehen sich auf die eingestellte Messspanne. Der grössere Wert ist gültig.
- 2) Alle Angaben beziehen sich auf Messbereichsendwert 20 mA

Langzeitdrift

0,1 K/Jahr (0,18 °F/Jahr) 1) oder 0,05 %/Jahr 1)2)

Einfluss Umgebungstempera-

 $T_d = Temperaturdrift$

 $\Delta \hat{\Theta} = \text{Abweichung der Umgebungstemperatur von der Referenzbedingung}$ Bei Temperaturangaben in °F, Ergebnis durch 1,8 teilen.

Widerstandsthermometer (RTD):

 $T_d = \pm (15 \text{ ppm/K} * \text{max. Messbereich} + 50 \text{ ppm/K} * \text{eingestellter Messbereich}) * \Delta 9$

Widerstandsthermometer Pt100:

 $T_d = \pm (15 \text{ ppm/K} * (Messbereichsendwert+200) + 50 \text{ ppm/K} * eingestellter Messbereich) * <math>\Delta 9$

Thermoelement (TC):

 T_d = \pm (50 ppm/K * max. Messbereich + 50 ppm/K * eingestellter Messbereich) * $\Delta \vartheta$

Montage

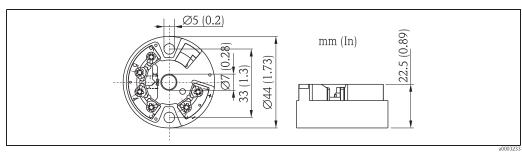
Montageort Anschlusskopf nach DIN EN 50446 Form B; Feldgehäuse TAF10 Einbaulage keine Einschränkungen

¹⁾ unter Referenzbedingungen

^{2) %} beziehen sich auf die eingestellte Messspanne. Der größere Wert ist gültig.

Umgebung

Umgebungstemperaturbe-
reich


-40...+85 °C (-40...+185 °F) (für Ex-Bereich siehe Ex-Zertifikat)

Lagerungstemperatur

-40...+100 °C (-40...+212 °F)

Konstruktiver Aufbau

Bauform, Maße

Abmessungen des Kopftransmitters

Gewicht

40 g (1.41 oz.)

Werkstoffe

Gehäuse: PC Vergussmaterial: PUR

Anschlussklemmen

Leitungen bis max. 1,75 mm² (16 AWG)

Bedienbarkeit

Bedienkonzept

Fernbedienung

Konfigurationskit TXU10-AA (Zubehör)

Schnittstellenkabel und PC-Bediensoftware Readwin® 2000

Schnittstelle: PC-Interface Verbindungskabel TTL -/- RS232 mit Steckverbindung

Konfigurierbare Parameter: Sensortyp und Anschlussart, Messdimension (°C/°F), Messbereiche, interne/externe Vergleichsstelle, Kompensation des Leitungswiderstands bei 2-Leiteranschluss, Fehlerverhalten, Ausgangssignal (4...20 mA/20...4 mA), digitales Filter (Dämpfung), Offset, Messstellenbezeichnung (8 Zeichen), Ausgangssimulation.

Zertifikate und Zulassungen

CE-Zeichen

Das Gerät erfüllt die gesetzlichen Anforderungen aus den EU-Richtlinien.

Ex-Zulassung

Über die aktuell lieferbaren Ex-Ausführungen (ATEX, FM, CSA, usw.) erhalten Sie bei Ihrer E+H-Vertriebsstelle Auskunft. Alle für den Explosionsschutz relevanten Daten finden Sie in separaten Ex-Dokumentationen, die Sie bei Bedarf ebenfalls anfordern können.

Variante für Ex-freien Bereich. E Anschlussart Standardwerkseinstellung 3-Leiter..... Konfiguration Anschlussart RTD 2-Leiter..... Konfiguration Anschlussart RTD 3-Leiter. Konfiguration Anschlussart RTD 4-Leiter. Konfiguration Temperatursensor Standardwerkseinstellung Pt100 Pt100 (-200°C... 850°C, min.SP 10K) nach IEC 60751 (a=0,00385). Ni100 (-60°C... 180°C, min.SP 10K) Pt500 (-200°C...250°C, min.SP 10K) 1 2 3 4 5 6 7 8 B C D E J K L N NIS00 (-200°C...150°C, min.SP 10K) NI500 (-60°C...150°C, min.SP 10K) Pt1000 (-200°C...250°C, min.SP 10K) Ni1000 (-60°C...150°C, min.SP 10K) Widerstandsgeber 10...400 0hm, min. Spanne 10 0hm Widerstandsgeber 10...400 Ohm, min. Spanne 10 Ohm Widerstandsgeber 10...2000 Ohm, min. Spanne 100 Ohm Typ B (0°C...1820°C, min.SP 500K) Typ C (0°C...2320°C, min.SP 500K) Typ D (0°C...2495°C, min.SP 500K) Typ E (-200°C... 1000°C, min.SP 50K) Typ J (-200°C... 1200°C, min.SP 50K) Typ J (-200°C...1372°C, min.SP 50K) Typ K (-200°C...1372°C, min.SP 50K) Typ L (-200°C...372°C, min.SP 50K) Typ N (-270°C...1300°C, min.Sp 50K) Typ S (-50°C...1768°C, min.Sp 50K) Typ S (-50°C...1768°C, min.Sp 50K) Typ T (-200°C... 400°C, min.Sp 50K) Typ T (-200°C... 400°C, min.Sp 50K) Typ U (-200°C... 600°C, min.Sp 50K) Konfig. Spannungsgeber -10...100mV, min. Spanne 5mV R S T U V Kundenspezifische Konfiguration Messbereich Kundenspezifische erweiterte Konfiguration TC Kundenspezifische erweiterte Konfiguration RTD Bestellschlüssel S UTN-500-

Zubehör

Bestellbezeichnung KKN 500 GM 500 TTL/RS 232 C KKN 501 Ausführung
Konfigurationskit (inkl. GM 500) + RS232-Schnittstellenkabel.
Setup-Programm.
PC-Schnittstellenkabel
Konfigurationskit (inkl. GM500 und USB-Anschluss).

Questionnaire

Standard setup / Standardeir	stellung		
Sensor	RTD	() Pt100	
		() 2 wire	() 3 wire () 4 wire
Unit / Einheit	() °C	() °F	
Range / Messbereich	Low scale Anfang	,	Bitte beachten!: Messbereich und min. Spanne (s. Techn. Daten)
	High scale Ende	,	Note!: Range and min. span (s. Techn. data)
Expanded setup / Erweiterte	Einstellung		
Compensation wire resistanc Kompensation Leitungswider		[0	20 Ohm] (only / nur RTD 2 wire)
Failure mode / Fehlerverhalten	$() \leq 3,6 \text{ mA}$	() \geq 21,0 mA	
Output / Ausgang	() 420 mA	() 204 mA	
Filter		[0,	1, 2,, 60s]
Offset		, [-9	,9 0+9,9K]
TAG PCP			

Füllstand

Pegel

Druck

Temperatur

Durchfluss

Visualisierung Messumformer

Sensorik

ACS-CONTROL-SYS know how mit System

ACS-CONTROL-SYSTEM GmbH Lauterbachstr. 67 D- 84307 Eggenfelden

Tel: +49 (D) 6721-9666-D Fex: +49 (D) 8721-9666-30

info@acs-controlsystem.de www.acs-controlsystem.de